Conexiant
Login
  • The Analytical Scientist
  • The Cannabis Scientist
  • The Medicine Maker
  • The Ophthalmologist
  • The Pathologist
  • The Traditional Scientist
The Analytical Scientist
  • Explore

    Explore

    • Latest
    • News & Research
    • Trends & Challenges
    • Keynote Interviews
    • Opinion & Personal Narratives
    • Product Profiles
    • App Notes

    Featured Topics

    • Mass Spectrometry
    • Chromatography
    • Spectroscopy

    Issues

    • Latest Issue
    • Archive
  • Topics

    Techniques & Tools

    • Mass Spectrometry
    • Chromatography
    • Spectroscopy
    • Microscopy
    • Sensors
    • Data & AI

    • View All Topics

    Applications & Fields

    • Clinical
    • Environmental
    • Food, Beverage & Agriculture
    • Pharma & Biopharma
    • Omics
    • Forensics
  • People & Profiles

    People & Profiles

    • Power List
    • Voices in the Community
    • Sitting Down With
    • Authors & Contributors
  • Business & Education

    Business & Education

    • Innovation
    • Business & Entrepreneurship
    • Career Pathways
  • Events
    • Live Events
    • Webinars
  • Multimedia
    • Video
Subscribe
Subscribe

False

The Analytical Scientist / Issues / 2018 / Jan / Resisting Arrest
Clinical Spectroscopy

Resisting Arrest

Could resonance Raman spectroscopy be the key to your heart?

By Roisin McGuigan 01/11/2018 1 min read

Share

For healthcare practitioners, being able to measure the oxygen levels in tissue is crucial – especially during surgery. Currently, venous blood is required to check the delivery of oxygen to mitochondria, but monitoring levels over time necessitates repeated blood draws, which can pose a problem in critically ill patients who may already be losing blood. Moreover, the method cannot give local information on specific tissues, and can be misleading in some patients.

Scientists from the Boston Children’s Heart Center have developed a device based on Raman spectroscopy that can not only provide reliable organ-specific  information on the delivery of oxygen to the mitochondria, but also predict cardiac arrest during and after surgery (1). Predicting when a patient’s heart will stop is not possible with current technologies, according to John Kheir of Boston Children’s Heart Center (2), because the heart is able to compensate for low oxygen conditions – until breaking point. “Once cardiac arrest occurs, its consequences can be life-long, even when patients recover,” said Kheir. The device is made up of a laser pump source and a fiber optics probe, which includes a jacketed glass fiber bundle that delivers the Raman signal back to a custom-built high-resolution/high-throughput spectrometer. In rat and pig models, the system detected changes in mitochondrial redox state, which correlated with tissue oxyhemoglobin saturation, and also predicted weakening contractions in the heart muscle (1). However, the device has not been tested for its ability to provide a measurement of overall oxygen levels in the body – and its current depth of penetration in vivo means it requires direct access to the tissue being monitored. Despite the limitations, a device that is able to directly measure oxygen levels within tissue does have utility; according to the authors: “[It] may be used to monitor tissue viability during surgery, for the protection of organs explanted for transplantation, or the identification of critical ischemia” (1).

Newsletters

Receive the latest analytical science news, personalities, education, and career development – weekly to your inbox.

Newsletter Signup Image

References

  1. DA Perry et al., “Responsive monitoring of mitochondrial redox states in heart muscle predicts impending cardiac arrest”, Sci Transl Med, 9 (2017). PMID: 28931652. SpectroscopyNOW.com, “Heart stopping science: Raman sensor”, (2017). Accessed January 8, 2018. Available at: http://bit.ly/2EjWI3d

About the Author(s)

Roisin McGuigan

I have an extensive academic background in the life sciences, having studied forensic biology and human medical genetics in my time at Strathclyde and Glasgow Universities.

More Articles by Roisin McGuigan

False

Advertisement

Recommended

False

False

The Analytical Scientist
Subscribe

About

  • About Us
  • Work at Conexiant Europe
  • Terms and Conditions
  • Privacy Policy
  • Advertise With Us
  • Contact Us

Copyright © 2025 Texere Publishing Limited (trading as Conexiant), with registered number 08113419 whose registered office is at Booths No. 1, Booths Park, Chelford Road, Knutsford, England, WA16 8GS.