Conexiant
Login
  • The Analytical Scientist
  • The Cannabis Scientist
  • The Medicine Maker
  • The Ophthalmologist
  • The Pathologist
  • The Traditional Scientist
The Analytical Scientist
  • Explore

    Explore

    • Latest
    • News & Research
    • Trends & Challenges
    • Keynote Interviews
    • Opinion & Personal Narratives
    • Product Profiles
    • App Notes

    Featured Topics

    • Mass Spectrometry
    • Chromatography
    • Spectroscopy

    Issues

    • Latest Issue
    • Archive
  • Topics

    Techniques & Tools

    • Mass Spectrometry
    • Chromatography
    • Spectroscopy
    • Microscopy
    • Sensors
    • Data & AI

    • View All Topics

    Applications & Fields

    • Clinical
    • Environmental
    • Food, Beverage & Agriculture
    • Pharma & Biopharma
    • Omics
    • Forensics
  • People & Profiles

    People & Profiles

    • Power List
    • Voices in the Community
    • Sitting Down With
    • Authors & Contributors
  • Business & Education

    Business & Education

    • Innovation
    • Business & Entrepreneurship
    • Career Pathways
  • Events
    • Live Events
    • Webinars
  • Multimedia
    • Video
Subscribe
Subscribe

False

The Analytical Scientist / Issues / 2021 / Oct / Breath Analysis with a (Very) Fine Toothed Comb
Spectroscopy

Breath Analysis with a (Very) Fine Toothed Comb

JILA scientists improve the sensitivity of their frequency comb breathalyzer to disease biomarkers by a thousandfold

By James Strachan 10/28/2021 1 min read

Share

GC-MS is the most widely used analytical technique in breath analysis. But a relatively slow technique that can usually only detect one chemical at a time is impractical for real-world testing. That’s why a group of researchers decided to tackle the problem by using mid-infrared cavity-enhanced direct-frequency comb spectroscopy (CE-DFCS) to simultaneously detect and monitor four health biomarkers – methanol, methane, water and a form of heavy water (HDO) – in the breath of a volunteer (1).

The novel system “fingerprints” chemicals by measuring the amount of light absorbed as a laser frequency comb passes back and forth through breath samples loaded into a mirrored glass tube. Recent upgrades include a shift in the light spectrum analyzed from the near-infrared to the mid-infrared band and advances in optical coatings, both of which have allowed detection sensitivity up to the parts-per-trillion level – a thousandfold improvement.

The researchers are confident that, by extending the comb lasers further into the infrared, they’ll be able to identify many hundreds of trace breath chemicals at once (2).

Newsletters

Receive the latest analytical science news, personalities, education, and career development – weekly to your inbox.

Newsletter Signup Image

References

  1. Q Liang et al., PNAS, 118, 40 (2021). DOI: 10.1073/pnas.2105063118.
  2. NIST (2021). Available at: https://bit.ly/3lKaHbe.

About the Author(s)

James Strachan

Over the course of my Biomedical Sciences degree it dawned on me that my goal of becoming a scientist didn’t quite mesh with my lack of affinity for lab work. Thinking on my decision to pursue biology rather than English at age 15 – despite an aptitude for the latter – I realized that science writing was a way to combine what I loved with what I was good at. From there I set out to gather as much freelancing experience as I could, spending 2 years developing scientific content for International Innovation, before completing an MSc in Science Communication. After gaining invaluable experience in supporting the communications efforts of CERN and IN-PART, I joined Texere – where I am focused on producing consistently engaging, cutting-edge and innovative content for our specialist audiences around the world.

More Articles by James Strachan

False

Advertisement

Recommended

False

False

The Analytical Scientist
Subscribe

About

  • About Us
  • Work at Conexiant Europe
  • Terms and Conditions
  • Privacy Policy
  • Advertise With Us
  • Contact Us

Copyright © 2025 Texere Publishing Limited (trading as Conexiant), with registered number 08113419 whose registered office is at Booths No. 1, Booths Park, Chelford Road, Knutsford, England, WA16 8GS.