Conexiant
Login
  • The Analytical Scientist
  • The Cannabis Scientist
  • The Medicine Maker
  • The Ophthalmologist
  • The Pathologist
  • The Traditional Scientist
The Analytical Scientist
  • Explore

    Explore

    • Latest
    • News & Research
    • Trends & Challenges
    • Keynote Interviews
    • Opinion & Personal Narratives
    • Product Profiles
    • App Notes

    Featured Topics

    • Mass Spectrometry
    • Chromatography
    • Spectroscopy

    Issues

    • Latest Issue
    • Archive
  • Topics

    Techniques & Tools

    • Mass Spectrometry
    • Chromatography
    • Spectroscopy
    • Microscopy
    • Sensors
    • Data & AI

    • View All Topics

    Applications & Fields

    • Clinical
    • Environmental
    • Food, Beverage & Agriculture
    • Pharma & Biopharma
    • Omics
    • Forensics
  • People & Profiles

    People & Profiles

    • Power List
    • Voices in the Community
    • Sitting Down With
    • Authors & Contributors
  • Business & Education

    Business & Education

    • Innovation
    • Business & Entrepreneurship
    • Career Pathways
  • Events
    • Live Events
    • Webinars
  • Multimedia
    • Video
Subscribe
Subscribe

False

The Analytical Scientist / Issues / 2021 / Feb / The Tree of (Solar) Life
Mass Spectrometry

The Tree of (Solar) Life

The analysis of radioactive carbon in tree rings provides insight into a millennium of solar activity

By Lauren Robertson 02/23/2021 1 min read

Share

At the center of our solar system sits a hot ball of burning gas that provides the major source of energy for life on our planet. Sunspots offer us a precious glimpse at the level of solar activity beyond its surface, but our eyes have yielded little information over the past four centuries – and detailed, direct satellite observations of these temporary phenomena are limited to the last 70 years. Now, however, a team from the Laboratory of Ion Beam Physics at ETH has managed to look as far back as the last millennium by measuring radioactive carbon levels in tree rings.

”We analyzed nine different trees that had been dated by dendrochronology – using their growth rings as an indicator – at annual resolution with accelerator MS (AMS),” says Nicolas Brehm, lead author of the paper. “Using this technique, we were able to get the 14C/12C ratio of each year,” he adds. Any change in 14C levels would reflect a change in the level of protection offered by the Sun – which usually guards the Earth from radioactive cosmic particles through its magnetic field.

“The analysis of the 11-year solar cycle before the observation of sunspots is of particular interest because, until now, we have been limited to analyzing the amplitude and length of just 25 cycles – since precise measurements are only available from about 1750 onwards,” says Brehm. “We’ve shown that amplitudes – how much the sun’s activity fluctuates – of these cycles are significantly reduced during grand solar minima (periods of low activity) compared to maxima (high activity).”

Not only does this work provide new insight into solar dynamics, but their high-temporal-resolution record of atmospheric carbon provides a whole new data set for improving radiocarbon calibration procedures. “Our next steps are to extend the record further back in time to reconstruct solar activity in annual resolution and search for more energetic particle events,” adds Brehm.

Newsletters

Receive the latest analytical science news, personalities, education, and career development – weekly to your inbox.

Newsletter Signup Image

References

  1. N Brehm et al., Nat Geosci, 14, 10 (2021). DOI: 10.1038/s41561-020-00674-0.

About the Author(s)

Lauren Robertson

By the time I finished my degree in Microbiology I had come to one conclusion – I did not want to work in a lab. Instead, I decided to move to the south of Spain to teach English. After two brilliant years, I realized that I missed science, and what I really enjoyed was communicating scientific ideas – whether that be to four-year-olds or mature professionals. On returning to England I landed a role in science writing and found it combined my passions perfectly. Now at Texere, I get to hone these skills every day by writing about the latest research in an exciting, creative way.

More Articles by Lauren Robertson

False

Advertisement

Recommended

False

False

The Analytical Scientist
Subscribe

About

  • About Us
  • Work at Conexiant Europe
  • Terms and Conditions
  • Privacy Policy
  • Advertise With Us
  • Contact Us

Copyright © 2025 Texere Publishing Limited (trading as Conexiant), with registered number 08113419 whose registered office is at Booths No. 1, Booths Park, Chelford Road, Knutsford, England, WA16 8GS.